miércoles, 5 de noviembre de 2008

♥ ADN Y ARN ♥

♥ ADN Y ARN ♥
Modificaciones de bases
Véase también: Metilación
La expresión de los genes está influenciada por la forma en la que el ADN está empaquetado en cromosomas, en una estructura denominada cromatina. Las modificaciones de bases pueden estar implicadas en el empaquetamiento del ADN: las regiones que presentan una expresión génica baja o nula normalmente contienen niveles altos de metilación de las bases citosina. Por ejemplo, la metilación de citosina produce 5-metil-citosina, que es importante para la inactivación del cromosoma X.[59] El nivel medio de metilación varía entre organismos: el gusano Caenorhabditis elegans carece de metilación de citosina, mientras que los vertebrados presentan un nivel alto - hasta 1% de su ADN contiene 5-metil-citosina.[60] A pesar de la importancia de la 5-metil-citosina, ésta puede desaminarse para generar una base timina. Las citosinas metiladas son por tanto particularmente sensibles a mutaciones.[61] Otras modificaciones de bases incluyen la metilación de adenina en bacterias y la glicosilación de uracilo para producir la "base-J" en kinetoplastos.[62] [63]

Daño del ADN
Véase también: Mutación

Benzopireno, el mayor mutágeno del tabaco, unido al ADN.[64]
El ADN puede resultar dañado por muchos tipos de mutágenos, que cambian la secuencia del ADN: agentes alquilantes, además de radiación electromagnética de alta energía, como luz ultravioleta y rayos X. El tipo de daño producido en el ADN depende del tipo de mutágeno. Por ejemplo, la luz UV puede dañar al ADN produciendo dímeros de timina, que se forman por ligamiento cruzado entre bases pirimidínicas.[65] Por otro lado, oxidantes tales como radicales libres o el peróxido de hidrógeno producen múltiples daños, incluyendo modificaciones de bases, sobre todo guanina, y roturas de doble hebra (double-strand breaks).[66] En una célula humana cualquiera, alrededor de 500 bases sufren daño oxidativo cada día.[67] [68] De estas lesiones oxidativas, las más peligrosas son las roturas de doble hebra, ya que son difíciles de reparar y pueden producir mutaciones puntuales, inserciones y deleciones de la secuencia de ADN, así como translocaciones cromosómicas.[69]
Muchos mutágenos se posicionan entre dos pares de bases adyacentes, por lo que se denominan agentes intercalantes. La mayoría de los agentes intercalantes son moléculas aromáticas y planas, como el bromuro de etidio, la daunomicina, la doxorubicina y la talidomida. Para que un agente intercalante pueda integrarse entre dos pares de bases, éstas deben separarse, distorsionando las hebras de ADN y abriendo la doble hélice. Esto inhibe la transcripción y la replicación del ADN, causando toxicidad y mutaciones. Por ello, los agentes intercalantes del ADN son a menudo carcinógenos: el benzopireno, las acridinas, la aflatoxina y el bromuro de etidio son ejemplos bien conocidos.[70] [71] [72] Sin embargo, debido a su capacidad para inhibir la replicación y la transcripción del ADN, estas toxinas también se utilizan en quimioterapia para inhibir el rápido crecimiento de las células cancerosas.[73]

Funciones biológicas
Las funciones biológicas del ADN incluyen el almacenamiento de información (genes y genoma), la codificación de proteínas (transcripción y traducción) y su autoduplicación (replicación del ADN) para asegurar la transmisión de la información a las células hijas durante la división celular.

Genes y genoma
Véase también: Núcleo celular, Cromatina, Cromosoma, y Genoma
El ADN se puede considerar como un almacén de información (mensaje) que contiene toda la información necesaria para construir y sostener el organismo en el que reside, y que se transmite de generación en generación. El conjunto de información que cumple esta función en un organismo dado se denomina genoma, y el ADN que lo constituye, ADN genómico.
El ADN genómico (que se organiza en moléculas de cromatina que a su vez se ensamblan en cromosomas) se encuentra en el núcleo celular de los eucariotas, además de pequeñas cantidades en las mitocondrias y cloroplastos. En procariotas, el ADN se encuentra en un cuerpo de forma irregular denominado nucleoide.[74]

- El ADN codificante

ARN polimerasa T7 (azul) produciendo un ARNm (verde) a partir de un molde de ADN (naranja).[75]
Véase también: Gen
La información genética de un genoma está contenida en los genes, y al conjunto de toda la información que corresponde a un organismo se le denomina su genotipo. Un gen es una unidad de herencia y es una región de ADN que influye en una característica particular de un organismo (como el color de ojos, por ejemplo). Los genes contienen un "marco de lectura abierto" (open reading frame) que puede transcribirse, además de secuencias reguladoras, tales como promotores y enhancers, que controlan la transcripción del marco de lectura abierto.
Desde este punto de vista, las obreras de este mecanismo son las proteínas. Estas pueden ser estructurales como las proteínas de los músculos, cartílagos, pelo, etc., o bien funcionales como la hemoglobina, o las innumerables enzimas del organismo. La función principal de la herencia es la especificación de las proteínas, siendo el ADN una especie de plano o receta para producirlas. La mayor parte de las veces la modificación del ADN provocará una disfunción proteica que dará lugar a la aparición de alguna enfermedad. Pero en determinadas ocasiones, las modificaciones podrán provocar cambios beneficiosos que darán lugar a individuos mejor adaptados a su entorno.
Las aproximadamente treinta mil proteínas diferentes en el cuerpo humano están constituidas por veinte aminoácidos diferentes, y una molécula de ADN debe especificar la secuencia en que se unen dichos aminoácidos.
En el proceso de elaborar una proteína, el ADN de un gen se lee y se transcribe a ARN. Este ARN sirve como mensajero entre el ADN y la maquinaria que elaborará las proteínas y por eso recibe el nombre de ARN mensajero o ARNm. El ARN mensajero sirve de molde a la maquinaria que elabora las proteínas, para que ensamble los aminoácidos en el orden preciso para armar la proteína.
El dogma central de la biología molecular establecía que el flujo de actividad y de información era: ADN → ARN → proteína.
En la actualidad ha quedado demostrado que este "dogma" debe ser ampliado, pues se han encontrado otros flujos de información: en algunos organismos (virus de ARN) la información fluye de ARN a ADN; este proceso se conoce como "transcripción inversa o reversa", también llamada "retrotranscripción". Adicionalmente, se sabe que existen secuencias de ADN que se transcriben a ARN y son funcionales como tales, sin llegar a traducirse nunca a proteína: son los ARN no codificantes, como es el caso de los ARN interferentes.[32] [33]

- El ADN no codificante ("ADN basura")
El ADN del genoma de un organismo puede dividirse conceptualmente en dos, el que codifica las proteínas (los genes) y el que no codifica. En muchas especies, sólo una pequeña fracción del genoma codifica proteínas. Por ejemplo, sólo alrededor del 1,5% del genoma humano consiste de exones que codifican proteínas (20.000 a 25.000 genes), mientras que más del 90% consiste de ADN no codificante.[76]
El ADN no codificante (también denominado ADN basura o junk DNA) corresponde a secuencias del genoma que no generan una proteína (procedentes de transposiciones, duplicaciones, translocaciones y recombinaciones de virus, etc.), incluyendo los intrones. Hasta hace poco tiempo se pensaba que el ADN no codificante no tenía utilidad alguna, pero estudios recientes indican que eso es inexacto. Entre otras funciones, se postula que el llamado "ADN basura" regula la expresión diferencial de los genes.[77] Por ejemplo, algunas secuencias tienen afinidad hacia proteínas especiales que tienen la capacidad de unirse al ADN (como los homeodominios, los complejos receptores de hormonas esteroides, etc.), con un papel importante en el control de los mecanismos de trascripción y replicación. Estas secuencias se llaman frecuentemente "secuencias reguladoras", y los investigadores suponen que sólo se ha identificado una pequeña fracción de las que realmente existen. La presencia de tanto ADN no codificante en genomas eucarióticos y las diferencias en tamaño del genoma entre especies representan un misterio que es conocido como el "enigma del valor de C".[78] Recientemente un grupo de investigadores de la Universidad de Yale ha descubierto una secuencia de ADN no codificante que sería la responsable de que los seres humanos hayan desarrollado la capacidad de agarrar y/o manipular objetos o herramientas.[79]
Por otro lado, algunas secuencias de ADN desempeñan un papel estructural en los cromosomas: los telómeros y centrómeros contienen pocos o ningún gen codificante de proteínas, pero son importantes para estabilizar la estructura de los cromosomas. Algunos genes no codifican proteínas, pero sí se transcriben en ARN: ARN ribosómico, ARN de transferencia, ARN de interferencia (ARNi, que son ARN que bloquean la expresión de genes específicos). La estructura de intrones y exones de algunos genes (como los de inmunoglobulinas y protocadherinas) son importantes por permitir los cortes y empalmes alternativos del pre-ARN mensajero que hacen posible la síntesis de diferentes proteínas a partir de un mismo gen (sin esta capacidad no existiría el sistema inmune, por ejemplo). Algunas secuencias de ADN no codificante representan pseudogenes que tienen valor evolutivo ya que permiten la creación de nuevos genes con nuevas funciones.Error en la cita: Closing missing for tag[80] Las histonas forman un complejo en forma de disco denominado nucleosoma, que contiene dos vueltas completas de ADN de doble hélice enrolladas alrededor de su superficie. Estas interacciones no-específicas quedan determinadas por la existencia de residuos básicos en las histonas, los cuales forman enlaces iónicos con el esqueleto de azúcar-fosfato del ADN y, por tanto, son en gran parte independientes de la secuencia de bases.[81] Las modificaciones químicas de estos aminoácidos básicos incluyen metilación, fosforilación y acetilación.[82] Estos cambios químicos alteran la fuerza de la interacción entre el ADN y las histonas, haciendo al ADN más o menos accesible a los factores de transcripción y por tanto modificando la tasa de transcripción.[83]
Otras proteínas que se unen a ADN de manera no-específica en la cromatina incluyen las proteínas del grupo de alta movilidad (HMG, High-Mobility Group) que se unen a ADN plegado o distorsionado.[84] Estas proteínas son importantes durante el plegamiento de los nucleosomas, organizándolos en estructuras más complejas para constituir los cromosomas[85] durante el proceso de condensación cromosómica. Se ha propuesto que en este proceso también estarían interviniendo otras proteínas, que forman una especie de "andamio" sobre el cual se organiza la cromatina; los principales componentes de esta estructura serían la enzima topoisomerasa II α (topoIIalpha) y la condensina 13S.[86] Sin embargo, el papel estructural de la topoIIalpha en la organización de los cromosomas aún es discutido, ya que otros grupos argumentan que esta enzima se intercambia rápidamente tanto en los brazos cromosómicos como en los cinetocoros durante la mitosis.[87]

Interacciones específicas
Un grupo bien definido de proteínas de unión a ADN son las que se unen específicamente a ADN de hebra simple (ssDNA). En humanos, la proteína A de replicación es la mejor conocida de su familia y se utiliza en procesos en los que la doble hélice se separa, como la replicación del ADN, la recombinación o la reparación del ADN.[88] Estas proteínas parecen estabilizar el ADN de hebra simple, protegiéndolo para evitar que formen estructuras de tallo-lazo (stem-loop) o que sea degradado por nucleasas.

El factor de transcripción represor del fago lambda unido a su ADN diana mediante un motivo hélice-giro-hélice (helix-turn-helix).[89]
Sin embargo, otras proteínas han evolucionado para unirse específicamente a secuencias particulares de ADN. La especificidad de la interacción de las proteínas con el ADN procede de los múltiples contactos con los extremos de las bases de ADN, lo que les permite "leer" la secuencia del ADN. La mayoría de esas interacciones con las bases occurren en la hendidura mayor, donde las bases son más accesibles.[90]
Las que se han estudiado con mayor detalle son los diferentes factores de transcripción, que son proteínas que regulan la transcripción. Cada factor de transcripción se une a una secuencia concreta de ADN y activa o inhibe la transcripción de los genes que presentan estas secuencias próximas a sus promotores. Los factores de transcripción pueden efectuar ésto de dos formas:
En primer lugar, pueden unirse a la polimerasa de ARN responsable de la transcripción, bien directamente o a través de otras proteínas mediadoras. De esta forma. se estabiliza la unión entre la ARN polimerasa y el promotor, lo que permite el inicio de la transcripción.[91]
Alternativamente, los factores de transcripción pueden unirse a enzimas que modifican las histonas del promotor, lo que modifica la accesibilidad del molde de ADN a la ARN polimerasa.[92]
Como los ADN diana pueden encontrarse por todo el genoma del organismo, los cambios en la actividad de un tipo de factor de transcripción pueden afectar a miles de genes.[93] En consecuencia, estas proteínas son frecuentemente las dianas de los procesos de transducción de señales que controlan las respuestas a cambios ambientales o diferenciación y desarrollo celular.

La enzima de restricción EcoRV (verde) formando un complejo con su ADN diana.[94]

Enzimas que modifican el ADN

Nucleasas y ligasas
Las nucleasas son enzimas que cortan las hebras de ADN mediante la catálisis de la hidrólisis de los enlaces fosfodiéster. Las nucleasas que hidrolizan nucleótidos a partir de los extremos de las hebras de ADN se denominan exonucleasas, mientras que las endonucleasas cortan en el interior de las hebras. Las nucleasas que se utilizan con mayor frecuencia en biología molecular son las enzimas de restricción, endonucleasas que cortan el ADN por determinadas secuencias específicas. Por ejemplo, la enzima EcoRV, que se muestra a la izquierda, reconoce la secuencia de 6 bases 5′-GATATC-3′, y hace un corte en ambas hebras en la línea vertical indicada, generando dos moléculas de ADN con los extremos romos. Otras enzimas de restricción generan sin embargo extremos cohesivos, ya que cortan de forma diferente las dos hebras de ADN. En la naturaleza, estas enzimas protegen a las bacterias contra las infecciones de fagos, al digerir el ADN de dicho fago cuando entra a través de la pared bacteriana, actuando como un mecanismo de defensa.[95] En biotecnología, estas nucleasas específicas de la secuencias de ADN se utilizan en ingeniería genética para clonar fragmentos de ADN y en la técnica de huella genética.
Las enzimas denominadas ADN ligasas pueden reunir hebras de ADN cortadas o rotas.[96] Las ligasas son particularmente importantes en la replicación de la hebra que sufre replicación discontinua en el ADN, ya que unen los fragmentos cortos de ADN generados en la horquilla de replicación para formar una copia completa del molde de ADN. También se utilizan en la reparación del ADN y en procesos de recombinación genética.[96]

Topoisomerasas y helicasas
Las topoisomerasas son enzimas que poseen a la vez actividad nucleasa y ligasa. Estas proteínas varían la cantidad de ADN superenrollado. Algunas de estas enzimas funcionan cortando la hélice de ADN y permitiendo que una sección rote, de manera que reducen el grado de superenrollamiento. Una vez hecho ésto, la enzima vuelve a unir los fragmentos de ADN.[57] Otros tipos de enzimas son capaces de cortar una hélice de ADN y luego pasar la segunda hebra de ADN a través de la rotura, antes de reunir las hélices.[97] Las topoisomerasas son necesarias para muchos procesos en los que interviene el ADN, como la replicación del ADN y la transcripción.[58]
Las helicasas son unas proteínas que pertenecen al grupo de los motores moleculares. Utilizan energía química almacenada en los nucleósidos trifosfatos, fundamentalmente ATP, para romper puentes de hidrógeno entre bases y separar la doble hélice de ADN en hebras simples.[98] Estas enzimas son esenciales para la mayoría de los procesos en los que las enzimas necesitan acceder a las bases del ADN.

Polimerasas
Las polimerasas son enzimas que sintetizan cadenas de nucleótidos a partir de nucleósidos trifosfatos. La secuencia de sus productos son copias de cadenas de polinucleótidos existentes, que se denominan moldes. Estas enzimas funcionan añadiendo nucleótidos al grupo hidroxilo en 3' del nucleótido previo en una hebra de ADN. En consecuencia, todas las polimerasas funcionan en dirección 5′ --> 3′.[99] En los sitios activos de estas enzimas, el nucleósido trifosfato que se incorpora aparea su base con la correspondiente en el molde: esto permite que la polimerasa sintentice de forma precisa la hebra complementaria al molde.
Las polimerasas se clasifican de acuerdo al tipo de molde que utilizan:
En la replicación del ADN, una ADN polimerasa dependiente de ADN realiza una copia de ADN a partir de una secuencia de ADN. La precisión es vital en este proceso, por ello muchas de estas polimerasas tienen una actividad de verificación de la lectura (proofreading). Mediante esta actividad, la polimerasa reconoce errores ocasionales en la reacción de síntesis, debido a la falta de apareamiente entre el nucleótido erróneo y el molde, lo que genera un desacoplamiento (mismatch). Si se detecta un desacoplamiento, se activa una actividad exonucleasa en dirección 3′ --> 5′ y la base incorrecta se elimina.[100] En la mayoría de los organismos las ADN polimerasas funcionan en un gran complejo denominado replisoma, que contiene múltiples unidades accesorias, como helicasas.[101]
Las ADN polimerasas dependientes de ARN son una clase especializada de polimerasas que copian la secuencia de una hebra de ARN en ADN. Incluyen la transcriptasa inversa, que es una enzima viral implicada en la infección de células por retrovirus, y la telomerasa, que es necesaria para la replicación de los telómeros.[102] [41] La telomerasa es una polimerasa inusual, porque contiene su propio molde de ARN como parte de su estructura.[42]
La transcripción se lleva a cabo por una ARN polimerasa dependiente de ADN que copia la secuencia de una de las hebras de ADN en ARN. Para empezar a transcribir un gen, la ARN polimerasa se une a una secuencia del ADN denominada promotor, y separa las hebras del ADN. Entonces copia la secuencia del gen en un tránscrito de ARN mensajero hasta que alcanza una región de ADN denomimada terminador, donde se detiene y se separa del ADN. Como ocurre con las ADN polimerasas dependientes de ADN en humanos, la ARN polimerasa II (la enzima que transcribe la mayoría de los genes del genoma humano) funciona como un gran complejo multiproteico que contiene múltiples subunidades reguladoras y accesorias.[103]

Recombinación genética
Estructura de un intermedio en unión de Holliday en la recombinación genética. Las cuatro hebras de ADN separadas están coloreadas en rojo, azul, verde y amarillo.[104]
Véase también: Recombinación genética

La recombinación implica la rotura y reunión de dos cromosomas homólogos (M y F) para producir dos cromosomas nuevos reorganizados (C1 y C2).
Una hélice de ADN normalmente no interacciona con otros segmentos de ADN, y en las células humanas los diferentes cromosomas incluso ocupan áreas separadas en el núcleo celular denominadas “territorios cromosómicos”.[105] La separación físca de los diferentes cromosomas es importante para que el ADN mantenga su capacidad de funcionar como un almacén estable de información. Uno de los pocos momentos en los que los cromosomas interaccionan es durante el sobrecruzamiento cromosómico (chromosomal crossover), durante el cual se recombinan. El sobrecruzamiento cromosómico ocurre cuando dos hélices de ADN se rompen, se intercambian y se unen de nuevo.
La recombinación permite a los cromosomas intercambiar información genética y produce nuevas combinaciones de genes, lo que aumenta la eficiencia de la selección natural y puede ser importante en la evolución rápida de nuevas proteínas.[106] Durante la profase I de la meiosis, una vez que los cromosomas homólogos están perfectamente apareados formando estructuras que se denominan bivalentes, se produce el fenómeno de sobrecruzamiento o entrecruzamiento (crossing-over), en el cual las cromátidas homólogas no hermanas (procedentes del padre y de la madre) intercambian material genético. La recombinación genética resultante hace aumentar en gran medida la variación genética entre la descendencia de progenitores que se reproducen por vía sexual. La recombinación genética también puede estar implicada en la reparación del ADN, en particular en la respuesta celular a las roturas de doble hebra (double-strand breaks).[107]
La forma más frecuente de sobrecruzamiento cromosómico es la recombinación homóloga, en la que los dos cromosomas implicados comparten secuencias muy similares. La recombinación no-homóloga puede ser dañina para las células, ya que puede producir translocaciones cromosómicas y anomalías genéticas. La reacción de recombinación está catalizada por enzimas conocidas como recombinasas, tales como RAD51.[108] El primer paso en el proceso de recombinación es una rotura de doble hebra, causada bien por una endonucleasa o por daño en el ADN.[109] Posteriormente, una serie de pasos catalizados en parte por la recombinasa, conducen a la unión de las dos hélices formando al menos una unión de Holliday, en la que un segmento de una hebra simple es anillada con la hebra complementaria en la otra hélice. La unión de Holliday es una estructura de unión tetrahédrica que puede moverse a lo largo del par de cromosomas, intercambiando una hebra por otra. La reacción de recombinación se detiene por el corte de la unión y la reunión de los segmentos de ADN liberados.[110]

Evolución del metabolismo de ADN
Véase también: Hipótesis del mundo de ARN
El ADN contiene la información genética que permite a la mayoría de los organismos vivientes funcionar, crecer y reproducirse. Sin embargo, no está claro durante cuánto tiempo ha ejercido esta función en los ~3000 millones de años de la historia de la vida, ya que se ha propuesto que las formas de vida más tempranas podrían haber utilizado ARN como material genético.[99] [111] El ARN podría haber funcionado como la parte central de un metabolismo primigenio, ya que puede transmitir información genética y simultáneamente actuar como catalizador formando parte de las ribozimas.[112] Este antiguo Mundo de ARN donde los ácidos nucléicos funcionarían como catalizadores y como almacenes de información genética podría haber influido en la evolución del código genético actual, basado en cuatro nucleótidos. Esto se debería a que el número de bases únicas en un organismo es un compromiso entre un número pequeño de bases (lo que aumentaría la precisión de la replicación) y un número grande de bases (que a su vez aumentaría la eficiencia catalítica de las ribozimas).[113]
Desgraciadamente, no disponemos de evidencia directa de los sistemas genéticos ancestrales porque la recuperación del ADN a partir de la mayor parte de los fósiles es imposible. Esto se debe a que el ADN es capaz de sobrevivir en el medio ambiente durante menos de un millón de años, y luego empieza a degradarse lentamente en fragmentos de menor tamaño en solución.[114] Algunas investigaciones pretenden que se ha obtenido ADN más antiguo, por ejemplo un informe sobre el aislamiento de una bacteria viable a partir de un cristal salino de 250 millones de años de antigüedad,[115] pero estos datos son controvertidos.[116] [117]
Sin embargo, pueden utilizarse herramientas de evolución molecular para inferir los genomas de organismos ancestrales a partir de organismos contemporáneos.[118] [119] En muchos casos, estas inferencias son suficientemente fiables, de manera que una biomolécula codificada en un genoma ancestral puede resucitarse en el laboratorio para ser estudiada hoy.[120] [121] Una vez que la biomolécula ancestral se ha resucitado, sus propiedades pueden ofrecer inferencias sobre ambientes y estilos de vida primigenios. Este proceso se relaciona con el campo emergente de la paleogenética experimental.[122]
A pesar de todo, el proceso de trabajo hacia atrás desde el presente tiene limitaciones inherentes, razón por la cual otros investigadores tratan de elucidar el mecanismo evolutivo trabajando desde el origen de la Tierra hacia delante en el tiempo. Dada suficiente información sobre la química en el cosmos, la manera en la que las sustancias cósmicas podrían haberse depositado en la Tierra, y las transformaciones que podrían haber tenido lugar en la superficie terrestre primigenia, tal vez podríamos ser capaces de aprender sobre los orígenes para desarrollar modelos de evolución de la información genética hacia delante en el tiempo[123] (véase también el artículo sobre el origen de la vida).

Técnicas comunes
El conocimiento de la estructura del ADN ha permitido el desarrollo de multitud de herramientas tecnológicas que explotan sus propiedades fisicoquímicas para analizar su implicación en problemas concretos: por ejemplo, desde análisis filogeńeticos para detectar similitudes entre diferentes taxones, a la caracterización de la variabilidad individual de un paciente en su respuesta a un determinado fármaco, pasando por un enfoque global, a nivel genómico, de cualquier característica específica en un grupo de individuos de interés. [124]
Podemos clasificar las metodologías de análisis del ADN en aquellas que buscan su multiplicación, ya in vivo, como la reacción en cadena de la polimerasa (PCR), ya in vitro, como la clonación, y aquellas que explotan las propiedades específicas de elementos concretos, o de genomas adecuadamente clonados, como son:
Secuenciación del ADN
Hibridación con sondas específicas:
Southern blot
Chips de ADN

Tecnología del ADN recombinante [editar]
La tecnología del ADN recombinante, piedra angular de la ingeniería genética, permite propagar grandes cantidades de un fragmento de ADN de interés, el cual se dice que ha sido clonado. Para ello, debe introducirse dicho fragmento en otro elemento de ADN, generalmente un plásmido, que posee en su secuencia los elementos necesarios para que la maquinaria celular de un hospedador, normalmente Escherichia coli, lo replique. De este modo, una vez transformada la cepa bacteriana, nuestro fragmento de ADN clonado se reproduce cada vez que aquella se divide.[125]
Para clonar la secuencia de ADN de interés, se emplean enzimas como herramientas de corte y empalme del fragmento y del vector (el plásmido). Dichas enzimas corresponden a dos grupos: en primer lugar, las enzimas de restricción, que poseen la capacidad de reconocer y cortar secuencias específicas; en segundo lugar, la ADN ligasa, que establece un enlace covalente entre extremos de ADN compatibles[124] (ver sección Nucleasas y ligasas).

Secuenciación
Artículo principal: Secuenciación de ADN
La secuenciación del ADN consiste en dilucidar el orden de los nucleótidos de un polímero de ADN de cualquier longitud, si bien suele dirigirse hacia la determinación de genomas completos, debido a que las técnicas actuales permiten realizar esta secuenciación a gran velocidad, lo cual ha sido de gran importancia para proyectos de secuenciación a gran escala como el Proyecto Genoma Humano. Otros proyectos relacionados, en ocasiones fruto de la colaboración de científicos a escala mundial, han establecido la secuencia completa del ADN de muchos genomas de animales, plantas y microorganismos.
El método de secuenciación de Sanger ha sido el más empleado durante el siglo XX. Se basa en la síntesis de ADN en presencia de didesoxinucleósidos, compuestos que, a diferencia de los desoxinucleósidos normales (dNTPs), carecen de un grupo hidroxilo en su extremo 3'. Aunque los didesoxinucleótidos trifosfatados (ddNTPs) pueden incorporarse a la cadena en síntesis, la carencia de un extremo 3'-OH imposibilita la generación de un nuevo enlace fosfodiéster con el nucleósido siguiente; por tanto, provocan la terminación de la síntesis. Por esta razón, el método de secuenciación también se denomina «de terminación de cadena». La reacción se realiza usualmente preparando un tubo con el ADN molde, la polimerasa, un cebador, dNTPs convencionales y una pequeña cantidad de ddNTPs marcados fluorescentemente en su base nitrogenada. De este modo, el ddTTP puede ir marcado en azul, el ddATP en rojo, etc. Durante la polimerización, se van truncando las cadenas crecientes, al azar, en distintas posiciones. Por tanto, se produce una serie de productos de distinto tamaño, coincidiendo la posición de la terminación debido a la incorporación del ddNTP correspondiente. Una vez terminada la reacción, es posible correr la mezcla en una electroforesis capilar (que resuelve todos los fragmentos según su longitud) en la cual se lee la fluorescencia para cada posición del polímero. En nuestro ejemplo, la lectura azul-rojo-azul-azul se traduciría como TATT..[126] [127]

Reacción en cadena de la polimerasa (PCR)
Artículo principal: Reacción en cadena de la polimerasa
La reacción en cadena de la polimerasa, habitualmente conocida como PCR por sus siglas en inglés, es una técnica de biología molecular descrita en 1986 por Kary Mullis,[128] cuyo objetivo es obtener un gran número de copias de un fragmento de ADN dado, partiendo de una escasa cantidad de aquél. Para ello, se emplea una ADN polimerasa termoestable que, en presencia de una mezcla de los cuatro desoxinucleótidos, un tampón de la fuerza iónica adecuada y los cationes precisos para la actividad de la enzima, dos oligonucleótidos (denominados cebadores) complementarios a parte de la secuencia (situados a distancia suficiente y en sentido antiparalelo) y bajo unas condiciones de temperatura adecuadas, moduladas por un aparato denominado termociclador, genera exponencialmente nuevos fragmentos de ADN semejantes al original y acotados por los dos cebadores.[125]
La PCR puede efectuarse como una técnica de punto final, esto es, como una herramienta de generación del ADN deseado, o como un método continuo, en el que se evalúe dicha polimerización a tiempo real. Esta última variante es común en la PCR cuantitativa.[124]

Southern blot
Artículo principal: Southern blot
El método de «hibridación Southern» o «Southern blot» (el nombre original en el idioma inglés) permite la detección de una secuencia de ADN en una muestra compleja o no del ácido nucleico. Para ello, combina una separación mediante masa y carga (efectuada mediante una electroforesis en gel) con una hibridación con una sonda de ácido nucleico marcada de algún modo (ya sea con radiactividad o con un compuesto químico) que, tras varias reacciones, dé lugar a la aparición de una señal de color o fluorescencia. Dicha hibridación se realiza tras la transferencia del ADN separado mediante la electroforesis a una membrana de filtro. Una técnica semejante, pero en la cual no se produce la mencionada separación electroforética se denomina dot blot.
El método recibe su nombre en honor a su inventor, el biólogo inglés Edwin Southern.[129] Por analogía al método Southern, se han desarrollado técnicas semejantes que permiten la detección de secuencias dadas de ARN (método Northern, que emplea sondas de ARN o ADN marcadas)[130] o de proteínas específicas (técnica Western, basada en el uso de anticuerpos).[131]

Chips de ADN
Artículo principal: Chip de ADN

Microarray con 37.500 oligonucleótidos específicos. Arriba a la izquierda se puede apreciar una región ampliada del chip.
Son colecciones de oligonucleótidos de ADN complementario dispuestos en hileras fijadas sobre un soporte, frecuentemente de cristal. Estos chips de ADN se usan para el estudio de mutaciones de genes conocidos o para monitorizar la expresión génica de una preparación de ARN.

Aplicaciones

Ingeniería genética
Véase también: Ingeniería genética y biología molecular
La investigación sobre el ADN tiene un impacto significativo, especialmente en el ámbito de la medicina, pero también en agricultura y ganadería (donde los objetivos son los mismos que con las técnicas tradicionales que el hombre lleva utilizando desde hace milenios - la domesticación, la selección y los cruces dirigidos - para obtener razas de animales y plantas más productivos). La moderna biología y bioquímica hacen uso intensivo de la tecnología del ADN recombinante, introduciendo genes de interés en organismos, con el objetivo de expresar una proteína recombinante concreta, que puede ser:
aislada para su uso posterior: por ejemplo, se pueden transformar microorganismos para convertirlos en auténticas fábricas que producen grandes cantidades de sustancias útiles, como insulina o vacunas, que posteriormente se aíslan y se utilizan en terapia.[132] [133] [134]
necesaria para reemplazar la expresión de un gen endógeno dañado que ha dado lugar a una patología, lo que permitiría el restablecimiento de la actividad de la proteína perdida y eventualmente la recuperación del estado fisiológico normal, no patológico. Este es el objetivo de la terapia génica, uno de los campos en los que se está trabajando activamente en Medicina, analizando ventajas e inconvenientes de diferentes sistemas de administración del gen (virales y no virales) y los mecanismos de selección del punto de integración de los elementos genéticos (distintos para los virus y los transposones) en el genoma diana.[135] En este caso, antes de plantearse la posibilidad de realizar una terapia génica en una determinada patología, es fundamental comprender el impacto del gen de interés en el desarrollo de dicha patología, para lo cual es necesario el desarrollo de un modelo animal, eliminando o modificando dicho gen en un animal de laboratorio, mediante la técnica ‘’knockout’’.[136] Sólo en el caso de que los resultados en el modelo animal sean satisfactorios se procedería a analizar la posibilidad de restablecer el gen dañado mediante terapia génica.
utilizada para enriquecer un alimento: por ejemplo, la composición de la leche (que es una importante fuente de proteínas para el consumo humano y animal) puede modificarse mediante transgénesis, añadiendo genes exógenos e inactivando genes endógenos para mejorar su valor nutricional, reducir infecciones en las glándulas mamarias, proporcionar a los consumidores proteínas antipatógenas y preparar proteínas recombinantes para su uso farmacéutico.[137] [138]
útil para mejorar la resistencia del organismo transformado: por ejemplo en plantas se pueden introducir genes que confieren resistencia a patógenos (virus, insectos, hongos…), así como a agentes estresantes abióticos (salinidad, sequedad, metales pesados…).[139] [140] [141]

Medicina forense
Véase también: Huella genética
Los médicos forenses pueden utilizar el ADN presente en la sangre, el semen, la piel, la saliva o el pelo en la escena de un crimen para identificar al responsable. Esta técnica se denomina huella genética, o también "perfil de ADN". Al realizar la huella genética, se compara la longitud de secciones altamente variables de ADN repetitivo, como los microsatélites, entre personas diferentes. Este método es frecuentemente muy fiable para identificar a un criminal.[142] Sin embargo, la identificación puede complicarse si la escena está contaminada con ADN de personas diferentes.[143] La técnica de la huella genética se desarrolló en 1984 por el genetista británico Sir Alec Jeffreys,[144] y fue utilizada por primera vez en medicina forense para condenar a Colin Pitchfork en los asesinatos de Narborough (UK) en 1983 y 1986.[145] Se puede requerir a las personas acusadas de ciertos tipos de crímenes que proporcionen una muestra de ADN para introducirlos en una base de datos. Esto ha facilitado la labor de los investigadores en la resolución de casos antiguos, donde sólo se obtuvo una muestra de ADN de la escena del crimen, en algunos casos permitiendo exonerar a un convicto. La huella genética también puede utilizarse para identificar víctimas de accidentes en masa,[146] o para realizar pruebas de consanguinidad.[147]

Bioinformática
Véase también: Bioinformática
La bioinformática implica la manipulación, búsqueda y extracción de información de los datos de la secuencia del ADN. El desarrollo de las técnicas para almacenar y buscar secuencias de ADN ha generado avances en el desarrollo de software de los ordenadores, para muchas aplicaciones, especialmente algoritmos de búsqueda de frases, aprendizaje automático y teorías de bases de datos.[148] La búsqueda de frases o algoritmos de coincidencias, que buscan la ocurrencia de una secuencia de letras dentro de una secuencia de letras mayor, se desarrolló para buscar secuencias específicas de nucleótidos.[149] En otras aplicaciones como editores de textos, incluso algoritmos simples pueden funcionar, pero las secuencias de ADN pueden generar que estos algoritmos presenten un comportamiento de casi-el-peor-caso, debido al bajo número de caracteres. El problema relacionado del alineamiento de secuencias persigue identificar secuencias homólogas y localizar mutaciones específicas que las diferencian. Estas técnicas, fundamentalmente el alineamiento múltiple de secuencias, se utilizan al estudiar las relaciones filogenéticas y la función de las proteínas.[150] Las colecciones de datos que representan secuencias de ADN del tamaño de un genoma, tales como las producidas por el Proyecto Genoma Humano, son difíciles de usar sin anotaciones, que marcan la localización de los genes y los elementos reguladores en cada cromosoma. Las regiones de ADN que tienen patrones asociados con genes que codifican proteínas – o ARN – pueden identificarse por algoritmos de localización de genes, lo que permite a los investigadores predecir la presencia de productos génicos específicos en un organismo incluso antes de que haya sido aislado experimentalmente.[151]

Nanotecnología de ADN

La estructura de ADN de la izquierda (mostrada de forma esquemática) se auto-ensambla en la estructura visualizada por microscopía de fuerza atómica a la derecha. La nanotecnología de ADN es el campo que busca diseñar estructuras a nanoescala utilizando las propiedades de reconocimiento molecular de las moléculas de ADN. Imagen de Strong, 2004. Plantilla:Doi-inline
Véase también: Nanotecnología
La nanotecnología de ADN utiliza las propiedades únicas de reconocimiento molecular del ADN y otros ácidos nucleicos para crear complejos ramificados auto-ensamblados con propiedades útiles. En este caso, el ADN se utiliza como un material estructural, más que como un portador de información biológica.[152] Esto ha conducido a la creación de láminas periódicas de dos dimensiones (ambas basadas en azulejos, así como usando el método de ADN origami[153] ), además de estructuras en tres dimensiones con forma de poliedros.

Historia y antropología
Véase también: Filogenia y Genealogía molecular
El ADN almacena mutaciones con el tiempo, que se heredan, y por tanto contiene información histórica, de manera que comparando secuencias de ADN, los genetistas pueden inferir la historia evolutiva de los organismos, su filogenia.[154] El campo de la filogenia es una herramienta potente en biología evolutiva. Si se comparan las secuencias de ADN dentro de una especie, los genetistas de poblaciones pueden conocer la historia de poblaciones particulares. Esto se puede utilizar en una amplia variedad de estudios, desde ecología hasta antropología, como por ejemplo, el análisis de ADN llevado a cabo para identificar las Diez Tribus Perdidas de Israel.[155] [156] Por otro lado, el ADN también se utiliza para estudiar relaciones familiares recientes.

♥ HERENCIA ♥

♥ Herencia biológica ♥

La herencia biológica es el proceso por el cual la prole de una célula u organismo adquiere o está predispuesta a adquirir, las característica de sus células u organismos progenitores. A través de la herencia, las variaciones adquiridas pueden irse acumulando.
Mecanismos de la herencia:
Herencia genética, resultado de la replicación del ADN y de la división celular.
Herencia epigenética resultado de, entre otras cosas, modificaciones en el ADN como el silencio o no expersión de un gen
El estudio de la herencia biológica se llama genética, que incluye también la epigenética

♥ GENETICA ♥

♥ Genética ♥
La genética (del término "Gen", que proviene de la palabra griega γένος y significa "raza, generación") es el campo de las ciencias biológicas que trata de comprender cómo la herencia biológica es transmitida de una generación a la siguiente, y cómo se efectúa el desarrollo de las características que controlan estos procesos.
Ciencia
La genética es una rama de las ciencias biológicas, cuyo objeto es el estudio de los patrones de herencia, del modo en que los rasgos y las características se transmiten de padres a hijos. Los genes se forman de segmentos de ADN (ácido desoxirribonucleico), la molécula que codifica la información genética en las células. El ADN controla la estructura, la función y el comportamiento de las células y puede crear copias casi o exactas de sí mismo.
La herencia y la variación constituyen la base de la Genética.
En la prehistoria, los seres humanos aplicaron sus intuiciones sobre los mecanismos de la herencia a la domesticación y mejora de plantas y animales. En la investigación moderna, la Genética proporciona herramientas importantes para la investigación de la función de genes particulares, como el análisis de interacciones genéticas. En los organismos, la información genética generalmente reside en los cromosomas, donde está almacenada en la secuencia de moléculas de ácido desoxirribonucleico (ADN).
Los genes contienen la información necesaria para determinar la secuencia de aminoácidos de las proteínas. Éstas, a su vez, desempeñan una función importante en la determinación del fenotipo final, o apariencia física, del organismo. En los organismos diploides, un alelo dominante en uno de los cromosomas homólogos enmascara la expresión de un alelo recesivo en el otro.
En la jerga de los genéticos, el verbo codificar se usa frecuentemente para significar que un gen contiene las instrucciones para sintetizar una proteína particular, como en la frase el gen codifica una proteína. Ahora sabemos que el concepto "un gen, una proteína" es simplista y que un mismo gen puede a veces dar lugar a múltiples productos, dependiendo de cómo se regula su transcripción y traducción.
La Genética determina buena parte (aunque no totalmente) de la apariencia de los organismos, incluyendo a los seres humanos. Las diferencias en el ambiente y otros factores aleatorios son también responsables en parte. Los gemelos idénticos (o monocigóticos), clones que resultan de la división del embrión, poseen el mismo ADN pero diferentes personalidades y huellas dactilares.

Cronología de descubrimientos notables
Artículo principal: Historia de la genética
Año
Acontecimiento
1865
Se publica el trabajo de Gregor Mendel
1900
Los botánicos Hugo de Vries, Carl Correns y Eric Von Tschermak redescubren el trabajo de Gregor Mendel
1903
Se descubre la implicación de los cromosomas en la herencia
1905
El biólogo británico William Bateson acuña el término "Genetics" en una carta a Adam Sedgwick
1910
Thomas Hunt Morgan demuestra que los genes residen en los cromosomas
1913
Alfred Sturtevant crea el primer mapa genético de un cromosoma
1918
Ronald Fisher publica On the correlation between relatives on the supposition of Mendelian inheritance —la síntesis moderna comienza.
1923
Los mapas genéticos demuestran la disposición lineal de los genes en los cromosomas
1928
Se denomina mutación a cualquier cambio en la secuencia nucleotídica de un gen, sea esta evidente o no en el fenotipo
1928
Fred Griffith descubre una molécula hereditaria transmisible entre bacterias (véase Experimento de Griffith)
1931
El entrecruzamiento es la causa de la recombinación
1941
Edward Lawrie Tatum y George Wells Beadle demuestran que los genes codifican proteínas; véase el dogma central de la Genética
1944
Oswald Theodore Avery, Colin McLeod y Maclyn McCarty demuestran que el ADN es el material genético (denominado entonces principio transformante)
1950
Erwin Chargaff demuestra que las proporciones de cada nucleótido siguen algunas reglas (por ejemplo, que la cantidad de adenina, A, tiende a ser igual a la cantidad de timina, T). Barbara McClintock descubre los transposones en el maíz
1952
El experimento de Hershey y Chase demuestra que la información genética de los fagos reside en el ADN
1953
James D. Watson y Francis Crick determinan que la estructura del ADN es una doble hélice
1956
Jo Hin Tjio y Albert Levan establecen que, en la especie humana, el número de cromosomas es 46
1958
El experimento de Meselson y Stahl demuestra que la replicación del ADN es semiconservativa
1961
El código genético está organizado en tripletes
1964
Howard Temin demuestra, empleando virus de ARN, excepciones al dogma central de Watson
1970
Se descubren las enzimas de restricción en la bacteria Haemophilius influenzae, lo que permite a los científicos manipular el ADN
1977
Fred Sanger, Walter Gilbert, y Allan Maxam secuencian ADN por primera vez trabajando independientemente. El laboratorio de Sanger completa la secuencia del genoma del bacteriófago Φ-X174
1983
Kary Banks Mullis descubre la reacción en cadena de la polimerasa, que posibilita la amplificación del ADN
1989
Francis Collins y Lap-Chee Tsui secuencian un gen humano por primera vez. El gen codifica la proteína CFTR, cuyo defecto causa fibrosis quística
1990
Se funda el Proyecto Genoma Humano por parte del Departamento de Energía y los Institutos de la Salud de los Estados Unidos
1995
El genoma de Haemophilus influenzae es el primer genoma secuenciado de un organismo de vida libre
1996
Se da a conocer por primera vez la secuencia completa de un eucariota, la levadura Saccharomyces cerevisiae
1998
Se da a conocer por primera vez la secuencia completa de un eucariota pluricelular, el nematodo Caenorhabditis elegans
2001
El Proyecto Genoma Humano y Celera Genomics presentan el primer borrador de la secuencia del genoma humano
2003
(14 de abril) Se completa con éxito el Proyecto Genoma Humano con el 99% del genoma secuenciado con una precisión del 99,99%[1]

Subdivisiones de la genética
La genética se subdivide en varias ramas, como:
Clásica o mendeliana: Se preocupa del estudio de los cromosomas y los genes y de cómo se heredan de generación en generación.
Cuantitativa, que analiza el impacto de múltiples genes sobre el fenotipo, muy especialmente cuando estos tienen efectos de pequeña escala
Molecular: Estudia el ADN, su composición y la manera en que se duplica. Asimismo, estudia la función de los genes desde el punto de vista molecular.
de Poblaciones y evolutiva: Se preocupa del comportamiento de los genes en una población y de cómo esto determina la evolución de los organismos.
del desarrollo: Se preocupa de cómo los genes controlan el desarrollo de los organismos

Ingeniería genética
La ingeniería genética es la especialidad que utiliza tecnología de la manipulación y trasferencia del ADN de unos organismos a otros, permitiendo controlar algunas de sus propiedades genéticas. Mediante la ingeniería genética se pueden potenciar y eliminar cualidades de organismos en el laboratorio. Por ejemplo, se pueden corregir defectos genéticos (terapia génica), fabricar antibióticos en las glándulas mamarias de vacas de granja o clonar animales como la oveja Dolly. Algunas de las formas de controlar esto es mediante transfección (lisar células y usar material genético libre), conjugación (plásmidos) y transducción (uso de fagos o virus), entre otras formas. Además se puede ver la manera de regular esta expresión genética en los organismos (Operon)